These are all using a very simple test for n,
round( pow(pInt,sqrt(1))/pi )%2==0
The images you see on this blog are output from various Ulam spiral generators I built in Flash, Python and most recently using Arduino. Generally, each dot in an image represents a number with integer 1 at center. In addition to writing algorithms to test each number for primality within a set I have discovered that an infinite number of calculations can be performed to create new designs and animation algorithms. The simplicity and speed of these algorithms make them an ideal fit for embedded systems graphics, scientific, mathematical and artistic explorations.
round( pow(sqrt(pInt)/e, 1.2) )%3==0
round( pow(sqrt(pInt)/e, 1.2) )%5==0
round( pInt/e )%3==0
round((pi*pX)*(pY)*pInt)%2==0
round( (pi*pX)*(pY)*.0025) % 2==0
, producing the same pattern as this Myka square.round( (pi*pX)*(pY)*(distillNumber(pInt)*.00025))%2==0
round( (pi*pX)*(pY)*(distillNumber(pInt)*.0000025))%2==0
round( (pi*pX)*(pY)*(distillNumber(pInt)*.00000025))%2==0
round( (pi*pX)*(pY)*(distillNumber(pInt)*.000000025))%2==0
round( ((pi*e)*pX)*(pY)*(distillNumber(pInt)* (sin(pInt)*.000000025) ))%2==0
round( (pX*pY)* pow(sqrt(pInt)/e, 1.2)*.0000025 )%3==0
round( (pX*pY)* pow(sqrt(pInt)/e, 1.2)*.00000025 )%2==0
round( (pX*pY)* pow(sqrt(pInt)/e, 1.2)*.000000025 )%2==0
round( (pX*pY)* pow(sqrt(pInt)/e, 1.2)*.0000000125 )%2==0
round( (pX*pY)* pow(sqrt(pInt)/pi, 1.23)*.000000125 )%5==0
round( (pX*pY)* pow(sqrt(pInt)/pi, 1.23456789)*.000123456789 )%5==0
round( (pX*pY)* pow(sqrt(pInt)/pi, 1.23456789)*.0000123456789 )%5==0
round( (pX*pY)* pow(sqrt(pInt)/pi, 1.23456789)*.00005 )%3==0
round( (pX*pY)* pow( sqrt(pInt), 1.23456789)*.00005 )%3==0
#global
fooCounter = 1
def testNumber(pInt):
global fooCounter
if round( (sqrt(pInt)/pi)+log(fooCounter) )%2 == distillNumber(pInt):
fooCounter += 1
return true
return false
"""
recursive function for boiling down multi-digit ints into single digit ints
"""
def distillNumber(rawNumber):
distilledNumber = 0
tmpList = split_len(str(rawNumber))
for k in range (len(tmpList)):
distilledNumber = distilledNumber + int(tmpList[k])
if len(str(distilledNumber))>1:
distilledNumber = distillNumber(distilledNumber)
return distilledNumber
def split_len(seq):
return [seq[i:i+1] for i in range(0, len(seq), 1)]
round( (sqrt(pInt)/pi)+fooCounter )%2 == 0
...round( (sqrt(pInt)/e)+fooCounter )%2 == 0
round( (sqrt(pInt)/e)+ pow(cos(fooCounter),2) )%distillNumber(pInt) == 0 or round( (sqrt(pInt)/e)+ pow(cos(fooCounter),3) )%distillNumber(pInt) == 0
round( (sqrt(pInt)/e)+ pow(cos(fooCounter),2) )%distillNumber(pInt) == 0 or round( (sqrt(pInt)/pi)+ pow(cos(fooCounter),2) )%distillNumber(pInt) == 0
#thai alphabet
round( (sqrt(pInt)/pi)+ pow(sin(fooCounter),2) )%distillNumber(pInt) == 0
def modifyCoordPoint(pNum):
return pNum + cos(pNum)
def modifyCoordPoint(pNum):
return pNum + (cos(pNum)*pi)
if round(pInt/pi)%2==0^pInt%5==true:
return true
distillNumber(pInt)*pow(sin(pInt),9)*pi
distillNumber(pInt)*pow(sin(pInt),5)*pi
(sin(pInt)*100) + distillNumber(pInt)/pi