The above image is a clockwise spiral beginning with 1 and ending with 250. This is a simplification of the base 18 spiral in the following post, as it was brought to my attention that not only do the digits of 18 add to 9, but ultimately a spiral with 9 arms would be the simplest representation of this mathematics. This is because now we have a spiral where each number within an arm is separated from its neighbor by exactly 9.
The following is the printable version sans legend:
Table version of the Base-9 Spiral with primes highlighted in red. Note that numbers in a given column ultimately add up to whatever number is in the top row. For example, 109 is found in column 1 underneath the base digit 1. 1+0+9 = 10 = 1+0 = 1. This type of sequence is well documented as "Numbers whose digital root is n" where n is a digit 1 through 9, attributed to Cino Hilliard. For more on integer sequences and a useful search tool go to http://www.research.att.com/~njas/sequences/Seis.html
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |
46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |
55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |
73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |
82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 |
100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 |
109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 |
118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 |
127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 |
136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 |
145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 |
154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 |
163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 |
172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 |
190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 |
199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 |
208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 |
217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 |
226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 |
235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 |
244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 |
253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 |
262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 |
271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 |
280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 |
289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 |
298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 |
307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 |
316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 |
325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 |
334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 |
343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 |
352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 |
361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 |
370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 |
379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 |
388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 |
397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 |
406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 |
415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 |
424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 |
433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 |
442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 |
451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 |
460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 |
469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 |
478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 |
487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 |
496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 |
505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 |
514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 |
523 | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 |
532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 |
541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 |
550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 |
559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 |
568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 |
577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 |
586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 |
595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 |
604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 |
613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 |
622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 |
631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 |
640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 |
649 | 650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 |
658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 |
667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 |
676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 |
685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 |
694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 |
703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 |
712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 |
721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 |
730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 |
739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 |
748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 |
757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 |
766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 |
775 | 776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 |
784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 |
793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 | 801 |
802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 810 |
811 | 812 | 813 | 814 | 815 | 816 | 817 | 818 | 819 |
820 | 821 | 822 | 823 | 824 | 825 | 826 | 827 | 828 |
829 | 830 | 831 | 832 | 833 | 834 | 835 | 836 | 837 |
838 | 839 | 840 | 841 | 842 | 843 | 844 | 845 | 846 |
847 | 848 | 849 | 850 | 851 | 852 | 853 | 854 | 855 |
856 | 857 | 858 | 859 | 860 | 861 | 862 | 863 | 864 |
865 | 866 | 867 | 868 | 869 | 870 | 871 | 872 | 873 |
874 | 875 | 876 | 877 | 878 | 879 | 880 | 881 | 882 |
883 | 884 | 885 | 886 | 887 | 888 | 889 | 890 | 891 |
A more comprehensive table with numbers listed to 17991 can be found at thedamagereport.com. Maybe you will be "the one" to find the pattern in the primes.